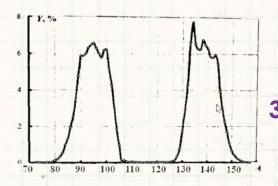


«Основы производства радиоактивных изотопов»

Лекция 7. Производство радионуклидов на реакторе.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.


Реакторные нуклиды (131, 133Xe) производят, либо помещая мишень из стабильного вещества в нейтронный канал реактора, либо выделяя продукты распада из ОЯТ (отработанное ядерное топливо) или урановых мишеней.

Реакторные радионуклиды получают в ядерных реакторах реакцией нейтронного захвата или делением тяжелых ядер.

1. Реакция радиационного захвата нейтрона — поглощение нейтрона ядром атома, приводящее к ядерных реакциям

98
Mo (n,γ) 99 Mo → 99 mTe
 112 Sn (n,γ) 113 Sn → 113 mIn
 130 Te (n,γ) 131 Te → 131 I

2. Реакция деления тяжелых ядер, осколочные радионуклиды — поглощение нейтронов тяжелыми ядрами и их последующий распад на два легких ядра: ${}^{235}_{02}U + {}^{1}_{0}n \rightarrow {}^{236}_{92}U \rightarrow {}^{99}_{42}Mo + {}^{133}_{50}Sn + 4{}^{1}_{0}n$

Реакторные радионуклиды и их применение в медицине

Радионуклид	T _{1/2}	Энергия распада, МэВ		Применение
	1,2	$E_{\beta max}$	Εγ	
⁹⁹ Mo	67 ч	0.87	0.74	Изготовление РФП на основе ^{99m} Тс для диагностики
			0.28	Диагностика и лечение
131 _I	8.02 сут	0.61	0.36	функциональных нарушений и
			0.64	рака щитовидной железы
³² P	14.3 сут	1.71	-	Диагностика, терапия, маркировка нуклеотидов
⁵¹ Cr	27.8 сут	-	0.323	Маркировка эритроцитов для биологических исследований
¹⁵³ Sm	1.05.00	0.81	0.07	Лечение боли в костях при
	1.95 сут		0.81	0.103
¹⁶⁶ Ho	1.1 сут	1.60	0.08	Лечение ревматоидного артрита
125 _I	60.2 сут	Э3	0.028- 0.035	РИА, брахитерапия онкозаболеваний

ЭЗ – электронный захват, РИА – радиоиммунный анализ.

Наиболее распространенные мишени |

Радиоизотоп	Мишень	Природное содержание, %	Радионуклидные примеси
⁹⁹ Mo	MoO ₃ 98Mo-24%	⁹² Mo (15.1), ⁹⁴ Mo (9.3), ⁹⁵ Mo (15.8), ⁹⁶ Mo (16.5), ⁹⁷ Mo (9.6), ¹⁰⁰ Mo (9.7)	^{93m} Mo, ⁹³ Mo, ¹⁰¹ Mo, ¹⁰¹ Tc, ⁹⁹ Tc, ¹⁸⁶⁺¹⁸⁸ Re
131 _I	Te/TeO ₂ 130Te-34.5%	¹²⁶ Te (18.8), ¹²⁸ Te (31.7)	¹²⁹ I, ⁷⁵ Se, ¹²⁵ Sb, ¹⁹⁸ Au, ¹⁹⁷⁺²⁰³ Hg, др.
³² P	S ³² S-95%	³³ S (0.75), ³⁴ S (4.21)	³³ P, ³⁵ S
51Cr	K ₂ CrO ₄ 50Cr-4. 35%	⁵² Cr (83.9), ⁵³ Cr (9.5)	⁴² K
¹²⁵ I	Хе (газ) 124 Xe-0.1%	¹²⁶ Xe (0.09), ¹³² Xe (26.9)	¹²⁶ I, ¹²⁷ I, ¹³¹ I, ¹³³ Xe
¹⁵³ Sm	Sm ₂ O ₃ 152Sm-26.7%	¹⁴⁴ Sm (3.1), ¹⁵⁴ Sm (22.7)	¹⁴⁵ Sm, ¹⁵¹ Sm, ¹⁵³ Sm ¹⁵⁴⁺¹⁵⁵ Eu, др.
¹⁶⁶ Ho	Ho ₂ O ₃	¹⁶⁵ Ho (100)	Радиоантаноиды, 166 Dy
²⁰³ Hg	HgO ²⁰² Hg-29.8%	¹⁹⁶ Hg (0.15),	¹⁹⁷ Hg, ¹⁹⁹ Hg, ¹⁹⁸⁺¹⁹⁹ Au
82Br	NH ₄ Br 81Br-49.3%	⁷⁹ Br (50.69)	^{80m} Br, ^{82m} Br

Способы снижения в мишенях содержания примесей и очистки от них

- выбор оптимальных параметров облучения;
- адекватное охлаждение мишени и контейнера;
- радиохимическая обработка и методы очистки:
- растворение;
- преципитация;
- жидкостная экстракция/ионообменное разделение;
- электрохимическое окисление/восстановление;
- жидкостная хроматография высокого давления; дистилляция, кристаллизация

Продукты нейтронного облучения			
Изотоп	T _{1/2}	Реакция	Применение
³² P	14 дн	$^{32}S(n,p)^{32}P$	Используется при лечении истинной полицитемии (избыток красные кровяные клеток). Бета-излучатель.
²⁴ Na	15 ч	23 Na $(n,\gamma)^{24}$ Na	Для исследования электролитов в организме.
⁴² K	12 ч	41 K $(n,\gamma)^{42}$ K	Используется для определения обменного калия в коронарном кровотоке.
⁵¹ Cr	28 дн	50 Cr $(n,\gamma)^{51}$ Cr	Для мечения красных кровяных телец и количественной оценки потери белка в желудочно-кишечном тракте.
⁵⁹ Fe	46 дн	58 Fe $(n,\gamma)^{59}$ Fe	Используется в исследованиях метаболизма железа в селезенке.
⁶⁰ Co	5.27 л	⁵⁹ Co(n,γ) ⁶⁰ Co	Для дистанционной лучевой терапии, для стерилизации.
⁷⁵ Se	120 дн	$^{74}\mathrm{Se}(\mathrm{n},\gamma)^{75}\mathrm{Se}$	Используется в виде селено-метионина для изучения производства пищеварительных ферментов
⁸⁹ Sr	50 дн	²³⁵ U (n,f) ⁸⁹ Sr	Очень эффективным в снижении боли при раке простаты и костей. Бета-излучатель.
⁹⁰ Y	64 ч	235 U (n,f) 90 Sr \to 90 Y	Используется при брахитерапии рака, а также для снятия боли при артрите в больших синовиальных суставах. Чистый бета-излучатель и приобретает все большее значение в терапии, особенно рака печени.
⁹⁹ Mo	66 ч	98 Mo(n, γ) 99 Mo 235 U(n,f) 99 Mo	Родительский изотоп в генераторе ^{99m} Tc
^{99m} Tc	6 ч	⁹⁹ Mo → ^{99m} Tc	Используется для визуализации скелета и сердечной мышцы, а также мозга, щитовидной железы, легких (перфузии и вентиляции), печени, селезенки, почек (структура и скорость фильтрации), желчного пузыря, костного мозга, слюнных и слезных желез и пр. Производится из Мо-99 в генераторе. Активац

1	¹⁰³ Pd	17 дн	$^{102}\mathrm{Pd}(\mathrm{n},\!\gamma)^{103}\mathrm{Pd}$	Для производства крошечных радиоактивных источников, которые имплантируются в простату при ранних стадиях рака.
	¹³¹ I	8 дн	$^{235}U(n,f)^{131}I$ $^{130}Te(n,\gamma)^{131}Te \rightarrow ^{131}I$	Используется д лечения рака щитовидной железы и ее визуализации. В диагностике нарушения функции печени, почечного кровотока и обструкции мочевыводящих путей. Сильный гамма-излучатель, но используется для бетатерапии.
	¹²⁵ I	59.4 дн	$^{124} \mathrm{Xe}(\mathrm{n}, \gamma)^{125} \mathrm{Xe} \! \to {}^{125} \mathrm{I}$	Используется при брахитерапии рака (простаты и мозга), для оценки скорости фильтрации почек и диагностики тромбоза глубоких вен в ноге. Он также широко используется в радиоиммунном анализе.
	¹³³ Xe	5 дн	235 U (n, f) 133 Xe	Используется для вентиляционных исследований легких.
100	¹³⁷ Cs	30 л		Для стерилизации крови.
	¹⁵³ Sm	47 ч	$^{15.2} \mathrm{Sm}(\mathrm{n},\gamma)^{153} \mathrm{Sm}$	Является очень эффективным в облегчении боли вторичного рака в кости. Также очень эффективен при раке простаты и молочной железы. Бета-излучатель
	¹⁶⁵ Dy	2 ч	$^{16.4}\mathrm{Dy}(\mathrm{n},\!\gamma)^{165}\mathrm{Dy}$	Используется в качестве агрегированного гидроксида при синовэктомии в лечении артрита.
	¹⁶⁶ Ho	26 ч	^{16 5} Ho(n,γ) ¹⁶⁶ Ho	Используется для диагностики и лечения опухолей печени
	¹⁶⁹ Er	9.4 дн	^{16 8} Er(n,γ) ¹⁶⁹ Er	Используется для снятия боли в синовиальных суставах при артрите
	¹⁶⁹ Yb	32 дн	^{16 8} Yb(n,γ) ¹⁶⁹ Yb	Используется для исследований спинномозговой жидкости.
	¹⁷⁷ Lu	6.7 дн	$^{176}\mathrm{Yb}(\mathrm{n},\gamma)^{177}\mathrm{Yb}{\rightarrow}^{177}\mathrm{Lu}$	Используется для визуализации. Бета-излучение используется для терапии малых (например, эндокринных) опухолей.
	¹⁸⁶ Re	3.8 дн	^{18 5} Re (n,γ) ¹⁸⁶ Re	Для облегчения боли при раке костей. Бета-излучатель со слабым гамма для работы с изображениями. Активац

100	68.9	¹⁸⁶ W(n,γ)	
¹⁸⁸ W	дн	$^{187}W(n,\gamma)^{188}W$	Родительский изотоп в генераторе ¹⁸⁸ R е
¹⁸⁸ Re	17 ч	$^{188}\mathrm{W} \! ightarrow ^{188}\mathrm{Re}$	Используется для бета облучения коронарных артерий.
¹⁹² Ir	74 дн	19 Ir(n, γ) 192 Ir	Используется в качестве внутреннего источника при лучевой терапии рака. Бета-излучатель.
¹⁹⁸ Au	2.7 дн	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	Используется для сканирования печени, определение кровотока печени, регионарного лимфотока и сканирование лимфатических узлов. В качестве лечебного средства вводится в ткани, полости и лимфатические сосуды.
²¹² Bi	10.6 ч	Генераторный изотоп ²²⁸ Th/ ²²⁴ Ra и ²²⁴ Ra/ ²¹² Bi	Со своим продуктом распада ²¹² Ро используется в таргетной альфа терапии рака или альфа радиоиммунотерапии, особенно при меланоме, раке молочной железы и раке яичников.
²¹³ Bi	46 м	Генераторный изотоп 229 Th/ 225 Ac и 225 Ac/ 213 Bi	Используется в <u>таргетной</u> альфа терапии

Основные характеристики качества радионуклидной продукции:

- 1. Удельная активность (количество распадов на единицу массы);
- 2. Радионуклидная чистота.

Существует универсальная формула, которая позволяет проводить расчеты количества производимых радионуклидов, но она работает только в случае короткого облучения и тонкой мишени

$$N_2 = \sigma N_1 \Phi t$$

где N_1 -ядер в мишени, Φ -поток частиц (шт/см²/с), σ -сечение (см²)

Интегрированием выражения $N_2 = \sigma N_1 \Phi t$ можно получить выражение для толстой мишени без учета распада:

$$A = Yit$$

где А-активность (Бк), Ү-выход (Бк/мкАч), t-время облучения. И выражение для толстой мишени с учетом распада за время облучения:

$$A = Yi(1 - e^{-\lambda t})/\lambda$$

СПАСИБО ЗА ВНИМАНИЕ!

